
F AD-A10 7 3 COLORADO UNIV AT BOULDER DEPT OF COMPUTER SCIENCE F/B 9/2
FSCAN-81 REPORT AND USER S MANUAL.(U)

UNC ED JU B M CLEMM OAA$29-78-6-OO46

UNCLASSIFIED CU-CS202-81 ARO 15074.13-M M4: EEEomhEoijiE
EEmhhhhhmhEEEE
mhhhohohmhhEEE

0 ~Ago J 60O74~ ,r\

LEVEL
UNIVERSITY OF COLORADO

DEPARTMENT OF COMPUTER SCIENCE

Techinial Repor

DTJCSELECTE
SEP 2 1981

9ON TATMENTI 8

819 01.78

Acc es,1 For -

NTIS GR &I
DTIC TAB
Unannounced -1
Justifi cationl-

Distribut ion/

Availability Codes

Dist iSpecial,

FSCAN-81 Report and User's Manual

by

Geoffrey M. Clemm
Department of Computer Science

University of Colorado at Boulder
Boulder, Colorado 80309

CU-CS-202-81 June 1981

INTERIM TECHNICAL REPORT
U. S. ARMY RESEARCH OFFICE

CONTRACT NO. DAAG29-78-G-0046

Approved for public release;
Distribution Unlimited DTIC

SEP 2 1981U

D

THE FINDINGS IN THIS REPORT ARE NOT TO
BE CONSTRUED AS ON OFFICIAL DEPARTMENT
OF THE ARMY POSIION, UNLESS SO DESIG-
NATED BY OTHER AUTHORIZED DOCUMENTS.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS
OR RECOMMENDATIONS EXPRESSED IN THIS PUB-
LICATION ARE THOSE OF THE AUTHOR AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE
NATIONAL SCIENCE FOUNDATION.

WE ACKNOWLEDGE U. S. ARMY RESEARCH SUPPORT
UNDER CONTRACT NO. DAAG29-78-G-0046 AND
NATIONAL SCIENCE FOUNDATION SUPPORT UNDER
GRANT NO. MCS77-02194.

..ASSIFICATION OF THIS PAGE (1eDnt. "a Ent._

REPORT DOCUMENTATION PAGE RE CTION-- BEFORE
1

COMPLEMCI;i FORJW

r-&PR NUMERT 12. 30VT ACC ESSION NO. 3. RECIPIENTS $CATALOG NUMBUER

C C- 2 2 -8 1
N U MBJ-IT L "

FSCAN-81 Report and User's Manual, 7I /
.

- . CONTRACT OR GRANT NUMEFR(.)
r Geoffrey Myen~ /6 v--DAAG29-78-G-O04_6

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Department of Computer Science ''
I

"
, NIT NUMBERS

University of Colorado at Boulder ./(/

Boulder, Colorado 80309 L , / -"* -__

il. CONTROLLING OFFICE NAME AND ADDRESS ..-- " 12qrORT DATE
U. S. Army Research Office
Post Office Box 12211 13. NUMSEROF
Research Triangle Park, NC 27709

14. MONITORING AGENCY NAME & ADORESS(I/ dillerent fron Conlrollng Office) IS. SECURITY CLASS. (of this report)/ , unclassified
15.. DECL ASSI FICATION/DOWN GRADIN G

SCHEDULE NA
Is. DISTRIBUTION STATEMENT (of this Report)

Approved for public re] ea~i- 4trbuton- unIimited.

17. DISTRIBUTION STATEMENT (of the abetrect entered in Block 20, I different from Report)

NA

IS. SUPPLEMENTARY NOTES

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other
authorized documents.

IS. KEY WORDS (Continue on reverse side It necessa'y and Identify by block nomber)

FSCAN, lexical analysis, scanning, compiler, interpreter, token,
regular expression, backtracking, deterministic, nonterminal,
terminal, goal symbol, screening

t-rASTRACT (Continue on reverse side it neceesary nd identify by block number)

FSCAN is a language for specifying the lexical analysis of programs written in
any current programming language, including FORTRAN. This report describes the
FSCAN language, a compiler for the language, and an interpreter for the resultin
object code. The interpreted object code forms an efficient lexical analyzer
that takes as input a stream of characters and produces as output a stream of
tokens (lexical units). The compiler and interpreter are designed for portabilit
Both are written in ANSI FORTRAN (1966) supplemented by a small number of short
machine dependent subroutines.

DD IFONA" 1473 EDITION OFI NOV651OSSOLETE unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When D at.a "7 0

CONTENTS

INTRODUCTION .. 1

THE LANGUAGE .. 2

Procedures ... 3

Rules .. 4

FSCAN Regular Expressions 6

Token-Actions ... 10

THE COMPILER .. 12

THE OBJECT CODE INTERPRETER 15

FSCAN-SUBSET OBJECT CODE INTERPRETER 20

Appendix A : Compiler machine dependencies 23

Appendix B : Interpreter machine dependencies 25

Appendix C : Syntax of FSCAN programs 26

Appendix D : Examples of FSCAN Programs 27

FSCAN .. 28

PASCAL ... 29

FORTRAN-77 .. 32

Appendix E Interpreter Size and Speed 40

..L. | 1 I I

Abstract

FSCAN is a language for specifying the lexical analysis
of programs written in any current programming language,
including FORTRAN. This report describes the FSCAN
language, a compiler for the language, and an interpreter
for the resulting object code. The interpreted object code
forms an efficient lexical analyzer that takes as input a
stream of characters and produces as output a stream of
tokens (lexical units). The compiler and interpreter are
designed for portability. Both are written in ANSI FORTRAN
(1966) supplemented by a small number of short machine
dependent subroutines.

1. INTRODUCTION

The first phase of the analysis of a computer program
is "lexical analysis" or "scanning", where the source text
is broken up into the words or "tokens" of the programming
language. For most languages this is a relatively
straightforward task, as spaces or some other delimiter are
required at any token separation points that could be
ambiguous. Unfortunately the ANSI FORTRAN standards [1,2]
specify that spaces for the most part are meaningless in
FORTRAN programs. This creates several ambiguous situations
that cannot without backtracking be resolved by a left-to-
right scan with single character look-ahead of the source
text. For example, if the string "DO" has been read, it is
unclear whether the scan has reached the end of the keyword,
"DO", in a statement such as

DO 10 I = 1, 3

or whether the scan is in the middle of a variable name in a
statement such as

DOOI = 1 + X

The problem of the lexical analysis of FORTRAN is
further complicated by the existence of numerous dialects
and extensions of FORTRAN that vary according to the

installation and particular compiler in use. The problem is
therefore most acute for a system such as the DAVE software
validation system [3] where it is desirable that all
variants of FORTRAN be readable. Ordinarily this would
entail recoding the lexical analyzer module for each new
FORTRAN variant, in addition to maintaining a library of
already coded lexical analyzer modules.

To minimize these tasks, the FSCAN Lexical Analyzer
Generating System was developed. The FSCAN system consists
of a language, a compiler for the language, and an
interpreter for the object code produced by the FSCAN
compiler. The FSCAN language and the LR style processing
were initially specified by DeRemer [4].

-2-

2. THE LANGUAGE

The FSCAN language (henceforth referred to simply as
"FSCAN") was designed to allow the specification of a
complex lexical analyzer, such as that required by FORTRAN,
in as concise and understandable a manner as possible.

An FSCAN program consists of the keyword, TOKENS,
followed by a list of the tokens to be generated, followed
by a single FSCAN procedure (within which may be defined
additional procedures) terminated by a period. An FSCAN
procedure specifies in an extended BNF-style notation a
grammar that describes a left-to-right pass over the source
text. During this pass each character is examined and
depending on the character and the current state of the
lexical analyzer, one of the following actions is taken:

1. mark the character as kept or deleted and move ahead to
the next character

2. call an FSCAN procedure

3. exit an FSCAN procedure

4. exit an FSCAN procedure and backup to the state and
location in the source text at which the procedure was
called

5. perform a specific token-action

The compiler verifies that an FSCAN program specifies a
deterministic lexical analyzer, i.e., that for any state of
the analyzer, the next action to be performed can be
uniquely determined from the character currently being
examined.

-3-

2.1. Procedures

Syntax

An FSCAN procedure or "scanner" consists of a sequence
of grammatical rules delimited by the keywords, 'SCANNER'
and 'END'. Following each of these keywords is the goal
symbol for the sequence of rules; this also serves as the
name of the procedure. The redundant repetition of the goal
symbol is used by the FSCAN compiler to ensure that the
'SCANNER' - 'END' pairs are matched in the way the
programmer intended. Each rule in the sequence is
terminated by a semicolon.

Example

SCANNER DIG:
rule 1; rule_2; ... rule n;
END DIG

Semantics

One of the rules must be a definition for the goal
symbol of the procedure. This rule specifies the finite-
state stack-automaton scan of the source text which is
performed when the procedure is called. The scan is
performed in a longest match manner; namely, given the
choice between finishing and scanning more of the source
text, the procedure will always continue scanning.

1111 II 11 1111 I.III - -- --

-4-

2.2. Rules

An FSCAN rule is either a macro rule or a procedure
rule. The scope of rule definitions corresponds to that of
ALGOL.

2.2.1. Macro Rules

As in a BNF rule, the left side of a macro rule is a
nonterminal while the right side is a sequence of
alternatives. Each alternative may have an associated
token-action, and an alternative, rather than being only a
sequence of terminals and nonterminals, may contain any of a
variety of operators, in the style of regular expressions,
as well as parentheses for grouping.

Syntax

Each alternative is preceded by a single-right-arrow
->). The optional token-action is placed at the end of

the corresponding alternative and is preceded by a double-
right-arrow (=>).

Example

TEXT -> fscan_reg_exprn_1 => action_1
-> fscanregexprn_2
-> fscanregexprn 3 => action_2

Semantics

A macro rule is a standard macro in that the right part
of the rule textually replaces any occurrence of the left
part, when the occurrence is in an FSCAN regular expression
within the scope of the macro rule definition. A macro rule
cannot be recursively defined except through a procedure
rule call. Thus in the above example, the nonterminal,
TEXT, could not appear in any of the three FSCAN regular
expressions in the right part, but the following
construction would be legal:

TEXT1 -> fscanreg_exprn containingTEXT2;

SCANNER TEXT2:
TEXT2 -> fscanreg_exprncontainingTEXTl;
END TEXT2;

This is legal since execution time recursion is implemented,
whereas recursively defined macros without intervening
procedure rule calls would imply infinite textual expansion
of the macro.

During execution of the interpreter, after an
alternative has been successfully matched with the source
text, the corresponding token-action, if any, is performed.

2.2.2. Procedure Rule

Syntax

A procedure rule is simply an FSCAN procedure.

Semantics

During execution of the interpreter, when a nonterminal
associated with a procedure rule is to be matched with the
source text, the appropriate procedure is called.

-6-

2.3. FSCAN Regular Expressions (abbreviation: FRE)

2.3.1. Atomic units

The atomic units of an FRE are terminals, integers, and
nonterminals.

2.3.1.1. Terminals

Syntax

A terminal is either a "kept-string" or a "deleted-
string." A kept-string is a sequence of characters enclosed
in double quotes (") while a deleted-string is a sequence of
characters enclosed in single quotes ('). If a sharp (#)
appears in the string, the sharp is ignored and the
immediately following character is treated as the next
character of the string, even if that character is a
double-quote, or a sharp. For terminals the strings are
restricted to be of length zero, length one, or the string
of length three, EOL. A length zero string matches no
character, a length one string matches the character of that
string, and EOL represents the end-of-line character.

Examples

.. 'A '' '## 11#'' 1 "EOL" ' EOL1

Semantics

The character of the terminal is compared with the next
character of the source text. If they match, the source
text character is marked as "kept" or "deleted", depending
on whether the terminal is a kept-string or a deleted-
string, and then the next character in the source text is
examined.

2.3.1.2. Nonterminals

Syntax

A nonterminal is a sequence of letters and digits, the
first of which is a letter.

Examples

A TEMP TEMP1 B3B

-7-

Semantics

Nonterminals can name macro rules or procedure rules.
As mentioned earlier, macro rule names are textually
replaced by the right part of the macro defining rule, for
which the semantics have been described. When the
nonterminal names a procedure, it indicates that the
appropriate procedure is to be called during execution.

2.3.1.3. Integers

Syntax

An integer is a string of digits.

Examples

54 0 05 1234567890

Semantics

Integers have their usual meaning.

2.3.2. Operations

The operations used to compose FSCAN regular
expressions are divided into two types: basic operations
and extended operations. Let A, B, C be FRE's, let a, b, c
be characters, and let n be a non-negative integer.

2.3.2.1. Basic Operations

Syntax

Alternation : A / B / C / .

Concatenation : A B C . . .

Repetition : A*

Negation : NOT A

Example

NOT (","I"I"/7") 'X'*

Semantics

An alternation successfully matches the source text if
any of its alternates do. A concatenation matches the

-8-

source text if its operands sequentially match the source
text. A repetition matches an arbitrary number (possibly
zero) of its operand with the source text. The operand of a
negation is restricted to regular expressions that specify a
set of characters, all of which are kept-strings or all of
which are deleted-strings. A negation then matches any
character that is not in its operand's character set. If
matched, a source character is marked as "kept" or "deleted"
if the operand character set consists of kept-strings or
deleted-strings, respectively.

2.3.2.2. Extended Operations

Syntax

<> : <abc...> = ('a' 'b' 'c' ...)

<<>> : <<abc...>> = ("a" "b" .c"° ...

+ : A+ = A A*

? A? = A / ()

LIST A LIST B = A (B A)*

ELSE: A ELSE B ELSE... =A / B /

** A**n A A ... A (n times)

?* A?*n Z A? A? .. A? (n times)

Restrictions: The operands of ELSE and the first operands
of ** and ?* are restricted to being the names of
procedures.

Semantics

The semantics of the extended operations are largely
determined by those of the basic operations by which they
are defined. The operators, ELSE, **, and ?*, are only
approximately equivalent to their respective syntactic
expansions, because they possess the following additional
properties:

ELSE

The ELSE construct provides a backtrack feature where
if the first operand fails to successfully match a segment
of the source text, the second operand is tried on the same
segment, etc. Once the final operand is invoked, match
failure will cause standard error recovery, rather than the
backtrack feature.

The only distinction between ** and its syntactic
expansion occurs when the exponent, n, is zero. In this
case A**O matches the input stream only if A would match the
next character in the input stream. Since the exponent is
0, no characters are actually matched by A, only the check
is performed. This can be used to cause the success or
failure of a particular branch of the ELSE operator.

The ?* operator provides limited backup, in the sense
that, if less than n A's have been successfully matched, the
scan is backed up to the state at which the last A (possibly
no A's) has been successfully matched.

- 10 -

2.4. Token-Actions

Syntax

A token-action is a kept or deleted string followed by
a nonterminal in parentheses. Either the string or the
nonterminal in parentheses may be omitted.

Examples

"NAME"(KEYWORD) "STRING" (OPERATOR) 'BEGIN'

Semantics

A token-action generates a sequence of characters
consisting of all characters marked as kept since the last
token-action. The presence of a nonterminal in parentheses
indicates that this sequence of characters is to be
"screened" or rescanned by the procedure rule named by the
nonterminal. If the screening procedure completely
processes the characters without encountering any erroneous
or "unmatchable" characters, all actions generated during
the screening (including token-actions) are performed;
otherwise, all such actions are ignored and a token is
output. The string of the token-action names the type of
the token to be output. All such strings used by an FSCAN
program must be listed following the keyword, TOKENS, at the
beginning of the FSCAN program. During runtime, the
generation of the n'th token in this list is indicated by
the output of the integer n+l (the integer, 1, indicates
end-of-file).

If the string is omitted, the screening is
unconditionally performed with standard error recovery at
erroneous characters. If the nonterminal in parentheses is
omitted the token is unconditionally output, without any
preceding attempt to screen.

2.4.1. End-of-File Token-Action

Since it was not considered useful to allow a lexical
analyzer to quit before reaching the end-of-file of the
source text, or to allow it to continue operating beyond the
end-of-file, the writer of an FSCAN program is not allowed
to reference the end-of-file. Instead, the procedure that
is the FSCAN program, i.e.,

TOKENS ...
SCANNER LEXANLYZ

LEXANLYZ ->
END LEXANLYZ.

- 11 -

is conceptually embedded in the following context:

TOKENS EOFTOK ...
SCANNER DEFAULT :

DEFAULT -> LEXANLYZ* EOF
EOF -> 'end-of-file' => 'EOFTOK' 7

SCANNER LEXANLYZ : ... END LEXANLYZ
END DEFAULT.

where 'end-of-file' matches the logical end-of-file of the
source text. EOFTOK is therefore predefined in all FSCAN
programs to be the token-action for end-of-file in the
source text and is indicated during runtime by the output of
the integer, 1.

2.4.2. Evaluation Token-Action

The FORTRAN Hollerith constant requires special
treatment by the lexical analyzer. In particular, the
lexical analyzer must be driven by a numeric value contained
in the source text. To provide this function, a special
"evaluate" token-action is included in FSCAN.

Syntax

The normal screening nonterminal is replaced by an
equals sign.

Examples

(=) "COUNT" (=)

Semantics

The sequence of characters generated by the token
action are evaluated as a positive decimal integer. The
compiler ensures that only digits can be marked as kept in
an alternative possessing an evaluate token-action. The
value resulting from this evaluation can then be referenced
by the FSCAN program by using the name of the rule
containing the evaluate token-action as an exponent in the
** or *? operators. The value of such a "variable" exponent
is always the result of the most recent evaluate token-
action performed by the rule named by the variable.

- 12 -

3. THE COMPILER

The FSCAN compiler consists of 6000 lines of standard
ANSI FORTRAN code. In addition, there is a group of short
(1 to 5 lines) routines that are machine dependent. (See
Appendix A).

The compiler takes one input file containing an FSCAN
program and produces three output files - a listing file
annotated with the number of the first token on each line, a
tables file containing the generated object code, and an
errors file describing any errors in the input. The files
are associated with the FORTRAN logical unit numbers five,
six, seven, and zero respectively.

The compiler contains eight processing modules that
perform the following tasks:

3.1. Lexical Analysis, Syntactic Analysis, and Tree
Construction

The input is read and all syntactic errors are
reported. If the input is syntactically correct, a parse
tree corresponding to the input grammar is built, otherwise
processing stops after the entire input has been scanned for
syntactic correctness.

3.2. Symbol Identification

Each applied occurrence of a symbol (i.e., in the right
sides of rules) is associated with its defining occurrence
(i.e., the rule in which that symbol was defined). In
addition the following errors are detected and reported:

(1) A scanner's beginning goal symbol is different from its
ending goal symbol (probably due to improper scanner
nesting that could not be detected by the parser).

(2) A nonterminal is defined by two different rules within
the same scanner.

(3) No rule defines the goal symbol of a scanner.

(4) A variable exponent is defined in something other than
a rule with an evaluate token-action.

(5) A symbol is used that has not been defined by any rule.

(6) A symbol that is an alternative of an ELSE, a screening
action, or the base of ** or *?, is defined in

4'.

- 13 -

something other than a procedure rule.

If any of the above errors occur, processing is halted
following the completion of the symbol identification phase.

3.3. Character Set Creation

The terminals are converted to a set containing the
appropriate character and, where feasible, set operations
corresponding to FSCAN operators are performed (i.e., '/'
and 'NOT') and the operator node is replaced by the
resulting set. In addition, by propagating attribute
vectors down and then back up the tree, the following errors
are detected and reported:

(1) A macro rule is recursively defined.

(2) A variable exponent is used before the variable could
have received a value.

(3) A 'NOT' operator is applied to something other than a
character set.

(4) A terminal string other than EOL consists of more than
one character.

(5) A rule containing a kept character is used in a context
where the kept character is associated with no token.

(6) A rule generating a token is used in a context where
another token is currently being built.

(7) A rule containing untokenized kept characters and a
rule producing tokens appear in the same context
(either error 5 or error 6).

(8) Non-digit characters are kept in a context where an
evaluate token-action could occur.

(9) A token type is used without being declared in the
TOKENS section.

(10) A token type is multiply declared in the TOKENS
section.

(11) A token type is declared to be deleted(kept), but used
as kept(deleted).

If any of the above errors occur, processing is halted
following the completion of the character set creation
phase.

- 14 -

3.4. Tree Threading

The tree is converted to a directed acyclic graph by
the addition of directed edges. This additional linkage
allows the LR processing to be performed efficiently.

3.5. Code Generation

The code for a lexical analyzer that will perform the
analysis specified by the user's grammar is generated. This
code is written out to a scratch file as it is produced.

3.6. Code Verification

The parse tree is purged and the code from the scratch
file is read into memory. It is then verified that the code
specifies a deterministic machine that will halt on finite
input. If the grammar specified nondeterministic or non-
halting behavior, this is reported as an error, and
processing will halt following completion of the code
verification phase. A nondeterminism error or "action
conflict" is reported by listing the group of actions that,
according to the grammar, would have to be performed
concurrently or nondeterministically. A non-halting error
is reported by indicating the action that, for certain
input, would be repetitively executed infinitely.

3.7. Code Assembly and Optimization

Address locations are compiled and assembled into the
code. Also the code is compacted by collapsing equivalent
character sets into a single character set.

3.8. Code Output

The final code is output in the form of FORTRAN BLOCK
DATA subprograms and appropriate accessing functions.

- 15 -

4. THE OBJECT CODE INTERPRETER

The object code interpreter, in conjunction with the
object code produced by the FSCAN compiler, forms a lexical
analyzer that will process a stream of input characters and
produce a stream of lexical units (tokens) as specified by
the FSCAN program that was compiled. The interpreter is
written in standard ANSI FORTRAN. In addition there is a
group of short (I to 5 line) routines that are machine
dependent (see Appendix B).

4.1. Input Interface

The stream of input characters is obtained by the
interpreter through repeated calls to the user-supplied
routine, GETBUF. The subroutine, GETBUF, has five output
parameters: four formal parameters and one array in a
labeled common block:

SUBROUTINE GETBUF (IBEG, IEND, EOLFLG, EOFFLG)

COMMON /user-defined-common-block/.... BUFFER(i),...

BUFFER is a user-defined array containing the
characters to be sent to the scanner, with the characters
stored one per array element.

IBEG and IEND are integer variables pointing
respectively to the first and last characters in BUFFER to
be sent. EOLFLG is a logical variable that is true iff an
EOL character is to be appended to the stream of characters
being returned in BUFFER. This EOL character is referenced
in an FSCAN program by the terminal 'EOL' or "EOL". EOFFLG
is a logical variable that is true iff there are no more
characters to be sent. When EOFFLG is true, the values in
BUFFER, IBEG, IEND, and EOLFLG are ignored.

Note: The user defined common block containing BUFFER must
be added to the routine EOIERR in the "Scanner Table Driver"
module. The array containing the characters must be named
BUFFER.

- 16 -

4.2. Output Interface

The interpreter must be initialized by a call to the
subroutine INISCN. Following this initialization, the
stream of tokens is obtained by making successive calls to
the subroutine, SCANNR. SCANNR has four output parameters,
all appearing in the labeled common block, /TOKENC/:

SUBROUTINE SCANNR
COMMON/TOKENC/TKNTYP, KTFLAG, ITKNCH, TKNCHR(30)

TKNTYP is an integer variable indicating the type of
the token, KTFLAG is a logical variable that is true for a
kept-token and false for deleted-token, ITKNCH is an integer
variable indicating the number of kept-characters in the
token, TKNCHR is an array containing the kept-characters
(one character per array element).

4.3. Errors Reported by the Interpreter

4.3.1. Recoverable Errors

The following recoverable errors are reported by the
lexical analyzer by generating a call of the form:

CALL SCNERR (i)

where i is an integer in the range, (l..10), indicating
which error occurred.

(1) Token is too long, i.e., the number of characters
marked as kept is larger than the size of the array,
TKNCHR. The default size of TKNCHR is 30. If longer
tokens are desired the interpreter would have to be
modified by increasing the size of TKNCHR and changing
the initialization of the variable MTKNCH to be the new
size.

Recovery: The token is truncated on the right.

(2) Token contains erroneous characters. An erroneous
character is one that is not an element of the set of
expected characters of the state of the interpreter at
the time the character was encountered. An erroneous
character is processed by the interpreter by skipping
over the erroneous character without changing the state
of the interpreter.

Recovery: Erroneous characters are marked as deleted.

- 17 -

(3) Token to be screened contains erroneous characters

Recovery: Erroneous characters are marked as deleted.

(4) Screening terminated with characters remaining in token
to be screened.

Recovery: The characters remaining in the token are
ignored.

(5) Erroneous characters occurred in token being screened,
and screening terminated at the end of the token while
skipping over erroneous characters.

Recovery: None necessary.

(6) End of input stream occurred prematurely.

Recovery: An EOFTOK token is generated.

(7) Erroneous characters occurred in input stream and end
of input stream occurred while skipping over erroneous
characters.

Recovery: An EOFTOK token is generated.

(8) End of token occurred prematurely while screening.

Recovery: Screening terminated and processing
continues.

(9) Erroneous characters occurred in input stream, and the
end of the characters read in by the most recent call
to GETBUF reached while skipping over erroneous
characters.

Recovery: the lexical analyzer is reset to its initial
state before the next call to GETBUF.

(10) The current call to GETBUF returns more characters than
there is room for in the internal character buffer of
the lexical analyzer.

Recovery: The lexical analyzer is reset to its initial
state and the previous contents of its internal buffer
is flushed. Note: It may be necessary to increase the
size of the internal buffer to prevent this error. See
fatal error six.

- 18 -

4.3.2. Fatal Errors

The following fatal errors are reported by the lexical

analyzer by generating a call of the form:

CALL FTLERR (i)

where i is an integer in the range, (1..6)

(1) The "call stack" overflowed.

To fix this error, the FSCAN program should be
rewritten to generate less procedure-call nesting at
run-time. Alternatively, the size of the array,
CSTACK, in the labeled common block, /CSTAKC/, must be
increased, and MCSTAC must be initialized in the block
data subprogram, SCANBD, to a value corresponding to
the new size of CSTACK.

(2) The "keep" stack overflowed.

To fix this error, the FSCAN program should be
rewritten to generate fewer tokens within the operands
of an ELSE construct or the operand of a ?*.
Alternatively, the size of the array, KSTACK, in the
labeled common block, /KSTAKC/, must be increased, and
MKSTAC must be initialized in the block data
subprogram, SCANBD, to a value corresponding to the new
size of KSTACK.

(3) Illegal action on call stack.

An internal error that should never occur.

(4) Error in backup.

An internal error that should never occur.

(5) Empty input buffer returned by GETBUF

To fix this error, the user should ensure that every
call to GETBUF returns either EOFFLG = TRUE or a non-
empty buffer (i.e., IBEG < IEND).

(6) Too many characters returned from GETBUF

To fix this error the user should ensure that every
call to GETBUF returns no more than CBFSIZ characters
(i.e., IEND-IBEG < CBFSIZ) where CBFSIZ is a variable
in the common block, /CHRBFC/, and is initialized in
the subprogram, INISCN. Alternatively, the size of the
array, BUFFER, in the common blockI /CHRBFC/, must be
increased, and MCHAR must be initialized in the block

-19-

data subprogram, SCANBD, to a value corresponding to
the new size of BUFFER. Since CBFSIZ is initialized in
INISCN to be MCAR-2, this will also increase the size
of CBFSIZ.

-MAIM"

-20-

5. FSCAN-SUBSET OBJECT CODE INTERPRETER

For many lexical analyzers, the full power of FSCAN is
unnecessary. For these analyzers, a smaller and more
efficient interpreter is available. This interpreter can be
used on the object code produced from FSCAN programs that
satisfy the following restrictions:

- The operators, ELSE, **, and ?* may not be used.

- Nonterminal and evaluate token-actions may not be used.

- All characters of a token must occur in the characters
returned from a single call to GETBUF.

5.1. Input Interface

The stream of input characters is obtained by the
interpreter through repeated calls to the user-supplied
routine, GETBUF. The subroutine, GETBUF, has one input
formal parameter, NMCHRS, and three output formal
parameters, BUFFER, EOLFLG, and EOFFLG:

SUBROUTINE GETBUF (NMCHRS, BUFFEREOLFLG,EOFFLG)
DIMENSION BUFFER(NMCHRS)

NMCHRS is an integer variable specifying the number of
characters that should be placed in BUFFER, one character
per array element.

EOLFLG is a logical variable that is true iff an EOL
character is to be appended to the stream of characters
being returned in BUFFER. This EOL character is referenced
in an FSCAN program by the terminal 'EOL' or "EOL". EOFFLG
is a logical variable that is set to be true iff there are
no more characters to be sent. When EOFFLG is true, the
values of BUFFER and EOLFLG are ignored.

5.2. Output Interface

See standard interpreter.

5.3. Errors Reported b the Interpreter

- 21 -

5.3.1. Recoverable Errors

(1) Recoverable error 1 from standard interpreter.

(2) Recoverable error 2 from standard interpreter.

(3) Recoverable error 6 from standard interpreter.

(4) Token extends past end of the characters read in by the
last call to GETBUF.

Recovery: The lexical analyzer is reset to its initial
state and the current contents of BUFFER is flushed.

5.3.2. Fatal Errors

(1) Fatal error I from standard interpreter.

(2) Fatal error 2 from standard interpreter.

(3) Illegal action for the FSCAN-subset interpreter.

To fix this error, the FSCAN program should be
rewritten to satisfy the requirements of the FSCAN-
subset. Alternatively the regular interpreter must be
used instead of the subset interpreter.

- 22 -

References

[I] ANSI : FORTRAN. X3.9-1966, American National Standards
Institute 1966.

[2] ANSI FORTRAN 77. X3.9-1978, American National
Standards Institute 1978.

[3] Osterweil, L. J.; and Fosdick, L. D. "DAVE - a
validation, error detection and documentation system
for FORTRAN programs," Software Practice and
Experience.

[4] DeRemer, F., SVG Memos #69-72, #76-77, #80, #83-84.
Dept. of Computer Science, University of Colorado at
Boulder, Boulder, Colorado, 1977.

- 23 -

Appendix A:
Machine Dependencies in the FSCAN compiler

1. Machine Dependent Constants

1.1. NCHARS

NCHARS in /NCHARSC/ is the number of distinct
characters in the character set of the machine.

1.2. NBTPWD

NBTPWD in /NBTPWC/ is the number of bits in a machine
word.

2. Machine Dependent Primitives

2.1. INTEGER FUNCTION INTGER (CHAR)

Input:
CHAR contains a character stored in lH (or Al) format.

Result:
An integer between 1 and NCHARS with a unique value for
each distinct character.

2.2. INTEGER FUNCTION CHRCTR (INT)

This is the inverse of the INTGER function.

2.3. INTEGER FUNCTION DIG (CHAR)

Input:
same as INTGER

Result:
If the character is a digit the result is the integer
value of the digit (0-9); otherwise the result is -1.

2.4. INTEGER FUNCTION IAND (I1,I2)
INTEGER FUNCTION IOR (Ii,I2T
INTEGER FUNCTION INOT (IF)

These functions return the result of the bitwise

logical operation of AND, OR and NOT, respectively.

2.5. LOGICAL FUNCTION EOFILE (ICHANL)

Input:
ICHANL is a logical channel number.

Result:
True iff channel ICHANL is at logical end of file.

- 24 -

2.6. INTEGER FUNCTION HOLCHR (HCONST,ICHAR)

Input:
HCONST is a Hollerith constant of the form
nHc lc 2.. .c n where n is an unsigned positive integer
and c i is a character, i=l..n. ICHAR is an integer
between 1 and n.

Result:
HOLCHR(HCONST,i) will return c i, stored in Al or 1H
format.

2.7. INTEGER FUNCTION LRS (IVAL, ICOUNT)
INTEGER FUNCTION LLS (IVAL, ICOUNT)

LRS and LLS return the logical shift (end-off, zero-
fill), right and left respectively, of ICOUNT binary
positions of the value, IVAL.

- 25 -

Appendix B:
Machine Dependencies in the FSCAN object code interpreter.

The following machine dependent primitives are
required:

1. INTEGER FUNCTION INTGER (CHAR)

2. INTEGER FUNCTION CHRCTR (INT)

3. INTEGER FUNCTION DIG (CHAR)

4. INTEGER FUNCTION LRS (IVAL, ICOUNT)

5. INTEGER FUNCTION LLS (IVAL, ICOUNT)

These routines are described in Appendix A.

- 26 -

Appendix C
Syntax of FSCAN programs

PROGRAM -> 'TOKENS' TERMINAL+ SCANNER '.'

SCANNER
-> 'SCANNER' GOAL SYMBOL '='

(RULE ';')+-'END' GOAL SYMBOL

RULE
-> NONTERMINAL ('->' REGEXPRN ('->' ACTION)?)+
- SCANNER

REGEXPRN -> REGTERM list '/'

REG-TERM -> REGPHRASE+

REGPHRASE -> REGFACTOR ('LIST' REG FACTOR)?

REG-FACTOR
-> REG PRIMARY ('*'/'+'/'?')?
-> 'NOT' REGPRIMARY

REG PRIMARY
- '(' REG EXPRN? ')'

-> NONTERMINAL list 'ELSE'
-> NONTERMINAL ('**' / '?*') EXPONENT
- TERMINAL

ACT ION
-> TERMINAL SCREENER?
-> SCREENER

SCREENER
-> '(' NONTERMINAL ')'

EXPONENT -> NONTERMINAL / '<INTEGER>'

GOAL SYMBOL -> '<NAME>'

NONTERMINAL -> '<NAME>' ;

SCREENER -> '<NAME>'

TERMINAL -> '<KEPTSTRING>' / '<DELETEDSTRING>'

Note: "A?" is equivalent to "A/()"

"A list B" is equivalent to A(B A)*

- 27 -

Appendix D
Examples of FSCAN Programs

Following are three complete FSCAN programs. They
describe lexical analyzers for the FSCAN language, PASCAL,
and FORTRAN-77 respectively.

-28-

TOKENS
"IDNTFR" "INTEGR" #"KSTRNG", #DSTRNG" "DELMTR" "OPRATR"

SCANNER FSCAN:
THIS IS THE FSCAN PROGRAM USED TO CREATE THE LEXICAL ANALYZER FOR
* THE FSCAN COMPILER. SCREENING OF KEYWORDS FROM IDENTIFIERS
AND LEGAL OPERATORS FROM OPERATORS IS DONE AUTOMATICALLY BY THE
SYMBOL TABLE MECHANISM AND IS THEREFORE NOT PERFORMED BY THE
LEXICAL ANALYZER.

FSCAN ->(SPACES FSCAN1)* SPACES
SPACES -(''/'EOL')*

SCANNER FSCAN1
FSCAN1 -> NAME/INTEGER/KSTRING/DSTRING/KKEYWORD

/DKEYWORD/DELIMITER/OPERATOR/COMMENT
END FSCAN1

NAME -> KACHAR (KACHAR IKDIGIT)* => "IDNTFR"

INTEGER ->KDIGIT+ => "INTEGR"

KSTRING ->DQ (NOTDQSH /SHARP KC)* DO => "KSTRNG"

DSTRING ->SQ (NOTSoSH /SHARP KC)* SO => "DSTRNG"

KKEYWORD ->''''KKEYCHAR* > >

DKEYWORD ->''DKEYCHAR* >

KKEYCHAR ->NOT(KEYDLM/"##") /SHARP KEYDLM => "KSTRNG"
DKEYCHAR ->NOT(KEYDLM/"##") /SHARP KEYDLM => "DSTRNG"
KEYDLM - 3~

DELIMITER ->":1/~ /1(1/l)l/~>'DEI24TR";

OPERATOR >(''/ /""/=
/ "?"/ "*"/ "+"i- >"OPRATR";

COMMENT ->SHARP (NOT 'EOL')* 'EOL'

ICACHAR " 'A"/ " 'B'' 'C"/ I' 'Dn' " 1El f/ ''F /"'G'/ ''H''/ III'' / 11V / ''K'' / OIL'/ ''1'i'/

DO -> fil' - SQ >#' SHARP -> '##'

NOTDQSH -> NOT("##"/"*"") ;NOTSQSH >NOT("##/"'"")

KC -> NOT("')

END FSCAN.

-29-

TOKENS
"IDENT" "NUMBER" "CCONST"
'AND' 'ARRAY' 'BEGIN' 'CASE' 'CONST' 'DIV' 'DO' 'DOWNTO' 'ELSE'
'END' 'FILE' 'FOR' 'FUNCT' 'GOTO' 'IF' 'IN' 'LABEL' 'MOD' 'NIL'
'NOT' 'OF' 'PACKED' 'PROC' 'PROG' 'RECORD' 'REPEAT' 'SET' 'THEN'
'TYPE' 'UNTIL' 'VAR' 'WHILE' 'WITH'
'LPARN' 'RPARN' 'LBRKT' 'RBRKT'
'ASGN' 'COLON' 'SCOLON' 'PD' 'COMMA' 'RANGE'
'PLUS' 'MINUS' 'DIVD' 'MULT' 'LT' 'GT' 'LE' 'GE' 'EQ' 'NE' 'PNTR'

SCANNER PASCAL
PASCAL -> (SPACES PASCAL1)* SPACES ;
SPACES -> (' O/IEOL')*

SCANNER PASCAL1 :
PASCALl -> NAME/NUMBER/SCONST/DELIMITER/OPERATOR/COMMENT ;

END PASCALl ;

- 30-

NAME -> ALPHA (ALPHA/DIGIT)* => "IDENT" (KEYWORD) ;

SCANNER KEYWORD
KEYWORD -> <AND> => 'AND'

-> <ARRAY> => 'ARRAY'
-> <BEGIN> => 'BEGIN'
-> <CASE> => 'CASE'
-> <CONST> => 'CONST'

-> <DIV> => 'DIV'

-> <DO> => 'DO'

-> <DOWNTO> => 'DOWNTO'

-> <ELSE> => 'ELSE'

-> <END> => 'END'

-> <FILE> => 'FILE'

-> <FOR> => 'FOR'

-> <FUNCTION> => 'FUNCT'
-> <GOTO> => 'GOTO'
-> <IF> => 'IF'
-> <IN> => 'IN'
-> <LABEL> => 'LABEL'
-> <MOD> => 'MOD'
-> <NIL> => 'NIL'
-> <NOT> => 'NOT'
-> <OF> => 'OF'
-> <PACKED> => 'PACKED'

-> <PROCEDURE> => 'PROC'

-> <PROGRAM> => 'PROG'
-> <RECORD> => 'RECORD'

-> <REPEAT> => 'REPEAT'

-> <SET> => 'SET'
-> <THEN> => 'THEN'

-> <TYPE> => 'TYPE'

-> <UNTIL> => 'UNTIL'

-> <VAR> => 'VAR'

-> <WHILE> => 'WHILE'

-> <WITH> => 'WITH'

END KEYWORD;

-31-

ALPHA ->"~Ah/lIB"/ SSCll/llDII/ "Ego/ 8lFII/llGlI/ **Hll/Sll/ll/mI/LI/aI

NUMBER ->DIGIT+ DECPART?*1
("Ell""/-) DIGIT+)? => "NUMBER"

SCANNER DECPART:
DECPART ->""DIGIT+ ; END DECPART;

DIGIT- 0 I/" /2/'3 14I/ I5I/"6"/S7/ 1US/19I

SCONST ->DOT (NOT(KQT/"EOL") / (DQT KQT))*DOT => "SCONST"
* DOT - '' KQT -

DELIMITER ->''=> 'LPARN'
-> ') '=> 'RPARN'
-> 17=> 'LBRKT'
->]'=> 'RBRKT'
-> : ''' => 'ASGN'
-> :'> 'COLON'
-> ;'=> 'SCOLON'
-> *1=> 'PD'
-> '=> 'COMMA'
-> 1 I I => 'RANGE',

OPERATOR ~>'- >'PLUS'

-> -I=> 'MINUS'
-> I=> 'DIVD'

,*1=> 'MULT'
-> <'> 'LT'

-> I>> 'GTl

-> =l> LEO'

-> C' >'> 'NE'

0-1 =~ > 'PNTR'

COMMENT ->~ 11CMNTCHRS''

CMNTCHRS ->(NOT('*') / 11NOTRP**0))*

SCANNER NOTRP
NOTRP -> NOT(')') END NOTRP

END PASCAL.

-32 -

TOKENS
"LBLFLD" "1NAME" "DCONST"1 "LCONST"1 "RCONST" "DPCNST"1 "FIELD"
'HCONST' 'EQS'
'KASSIG' 'KBACKS' 'KBLOCK' 'KCALL' 'KCLOSE' 'KCOMMO' 'KCONTI'
'KDATA' 'KDO' 'KDIMEN' 'KELSE' 'KEND' 'KENDFI' 'KENTRY' 'KEQUIV'
'KEXTER' 'KFUNCT' 'KFORMA' 'KGO' 'KIF' 'KIMPLI' 'KINQUI' 'KINTRI'
'KOPEN' 'KPARAM' 'KPAUSE' 'KPRINT' 'KPROGR' 'KREAD' 'KRETUR'
'KREWIN' 'KSAVE' 'KSTOP' 'KSUBRO' 'KTHEN' 'KTO' 'KWRITE'
'KINTEG' 'KREAL' 'KDOUBL' 'KPRECI' 'KCOMPL' 'KLOGIC' 'KCHARA'
'COMMA' 'EQUALS' 'COLON' 'LPAREN' 'RPAREN'
'LE' 'LT' 'EQ' 'NE' 'GE' 'GT' 'AND' 'OR' 'EQV' 'NEQV' 'NOT'
'ASTRSK' 'DBASTR' 'PLUS' 'MINUS' 'SLASH' 'CONCAT'

SCANNER FORTRAN77:
IT IS ASSUMED THAT GETBUF SKIPS OVER COMMENT LINES

FORTRAN77 -> ULSTMT*

ULSTMT ->BSTMT CSTMT?*19 "EOL" => (FORTRANSTATEMENT)

BSTMT ->KC**72 DC*
SCANNER CSTMT:

CSTMT -> 'EOL' SBLANK**5 NOTW '/'o') BSTMT
SCANNER SBLANK:

SBLANK ->'';END SBLANJ(END CSTMT

SCANNER DC:
DC -> NOT(EOL') ; END DC

SCANNER KC:
KC ->NOT("EOL") ; END KC

- 33 -

FORTRANSTMT -> LABELF BLANKCF (' '*)
(STMT ELSE ASGN ELSE STMT) TEXT EOS

STMT IS TRIED FIRST FOR EFFICIENCY, SINCE IN GENERAL STMT WILL FAIL
AFTER A FEW CHARACTERS ON ASSIGNMENT STATEMENTS, WHILE ASGN WILL
USUALLY HAVE TO SCAN AN ENTIRE KEYWORD STATEMENT BEFORE FAILING.
IF ASGN THEN FAILS, STMT IS INVOKED AS IT PROVIDES SUPERIOR ERROR
RECOVERY.

LABELF -> KC**5 => (SCANLBL)
SCANNER SCANLBL

SCANLBL -> (' '*) LBLFLD? ;
LBLFLD-> DIGIT+ => "LBLFLD" ;
END SCANLBL

BLANKCF -> (' '/'o')
-> NOT ('/'0') => 'EOS' ; #EOS USED AS 'ERROR-TOKEN'

EOS -> 'EOL' => 'EOS'

STMT MATCHES ALL FORTRAN STATEMENTS WITH KEYWORDS
I.E. ALL STATEMENTS EXCEPT ASSIGNMENT AND STATEMENT FUNCTION DEF'S.

SCANNER STMT:
STMT -> BACKSPACE/BLOCK DATA/CONTINUE/DIMENSION/ENDFILE

/EQUIVALENCE/EXTERNAL/FUNCTION/INQUIRE/INTRINSIC
/ PARAMETER/PROGRAM/SUBROUTINE
(FELSE / FEND IF?) EOLCHK

-> (CALL/CLOSE/COMMON/DATA/ENTRY/GO TO/OPEN/PAUSE/PRINT
/READ/RETURN/REWIND/SAVE/STOP/WRITE/TYPE(FCN ELSE NULL))

ICONST? NAME? PARENS? PARENS? EQTRAP
-> ASSIGN LABEL TO
-> DO LABEL COMMA? NAME EQUALS EXPR COMMA
-> FELSE IF PARENS THEN
-> FORMAT FORMATSPEC EOLCHK
-> IF PARENS (SCTHEN ELSE STMT ELSE NULL) PARENS? EQTRAP
-> IMPLICIT ((TYPE PARENS) LIST COMMA)

EOLCHK ENSURES THAT THE NEXT CHARACTER IS AN EOL,
WITHOUT PROCESSING THE EOL.

EOLCHK -> SCEOL**O ;
SCANNER SCEOL : SCEOL -> 'EOL' ; END SCEOL 7

EQTRAP CAUSES THE CURRENT ALTERNATIVE TO FAIL IF AN EQUALS-SIGN IS
THE NEXT INPUT STREAM CHARACTER, SINCE ' MATCHES NO CHARACTERS.

EQTRAP -> ('=' '')? ;

TYPE -> INTEGER/REAL/DOUBLE PRECISION/COMPLEX/LOGICAL
/CHARACTER (ASTRSK LENSPEC)?

SCANNER LENSPEC :
LENSPEC -> ICONST/PARENS ; END LENSPEC

LABEL -> DIGIT+ => "DCONST" 7

END STMT;

-34-

SCANNER ASGN
ASGN -> NAME PARENS? PARENS? EQUALS ;END ASGN

SCANNER NULL : NULL - ;END NULL

SCANNER FCN:
FCN -> FUNCTION
END FCN;

SCANNER SCTHEN
SCTHEN -> THEN ; END SCTHEN

SCANNER PARENS:
PARENS -> LPAREN (NAMLITOP/SEPARATOR/PARENS) * RPAREN;
END PARENS;

SCANNER NAMLITOP:
NAMLITOP -> NAME/LITERAL/OPERATOR
END NAMLITOP

SCANNER EXPR:
EXPR -> (NAMLITOP/PARENS)+ ; END EXPR

SCANNER TEXT:
TEXT -> (NAMLITOP/SEPARATOR/LPAREN/RPAREN) *

END TEXT;

- 35 -

ASSIGN -> A S S I G N => 'KASSIG'
BACKSPACE -B A C K S P A C E => 'KBACKS'
BLOCK -B L O C K => 'KBLOCK'
CALL ->C A LL => = KCALL'
CHARACTER -> C H A R A C T E R => 'KCHARA'
CLOSE C L O S E =- 'KCLOSE'
COMMON -> C 0 M M 0 N => 'KCOMMO'
COMPLEX -> C 0 M P L E X => KCOMPL'
CONTINUE -C O N T I N U E => KCONTI'
DATA ->D A T A => 'KDATA'
DIMENSION -> D I M E N S I 0 N => 'KDIMEN'
DO ->D O => KDO' ;
DOUBLE -> D 0 U B L E => 'KDOUBL'
FELSE -> E L S E => 'KELSE'
FEND ->E N D => 'KEND'
ENDFILE -> E N D F I L E => 'KENDFI'
ENTRY -E N T R Y => 'KENTRY' 7

EQUIVALENCE -> E Q U I V A L E N C E => 'KEQUIV'
EXTERNAL -> E X T E R N A L => 'KEXTER'
FORMAT -> F 0 R M A T => 'KFORMA' ;
FUNCTION -> F U N C T I 0 N => 'KFUNCT' 7

GO -G O => 'KGO'
IF -> I F => 'KIF'
IMPLICIT -> I M P L I C I T => 'KIMPLI'
INQUIRE -) I N Q U I R E => 'KINQUI'
INTEGER -> I N T E G E R => 'KINTEG'
INTRINSIC -> I N T R I N S I C => 'KINTRI'
LOGICAL -> L 0 G I C A L => 'KLOGIC'
PARAMETER - p A R A M E T E R => 'KPARAM'
PRECISION -P R E C I S I O N => 'KPRECI'
OPEN -0 P E N => 'KOPEN' ;
PAUSE -> P A U S E => "<AUSE'
PRINT - p R I N T => 'KPRINT' ;
PROGRAM -> P R 0 G R A M => 'KPROGR'
READ -R E A D => 'KREAD'
REAL -R E A L => 'KREAL'
RETURN -> R E T U R N => 'KRETUR'
REWIND -> R E W I N D => 'KREWIN' ;
SAVE ->S A V E => 'KSAVE'
STOP ->S T O P => 'KSTOP' 7

SUBROUTINE -> S U B R 0 U T I N E => 'KSUBRO' ;
THEN ->T H E N => 'KTHEN' ;
TO -T O => 'KTO' -
WRITE -W R I T E- 'KWRITE' 7

-36-

A -> 'A' (*

MI -> "1A"l I I*

B - > 'B' 1' 3*

c - > 'C' 1' 3*)

D >'Do (C 3*)

DK ->"Do' (1 3*)

E ->'E' (3 *

EK >"Ell (I *

F > 'F'I (@ *

FK -> F" # 3*

G ->'G' (' ')

GK ->"G" (3 *

H -> H' (1 *

K >'K' (C 3*)

L ->'L' (3 '*)

LK ->"L" (3 3*) 3
m -> m' (' '*)
N -> N' (C3*

NK ->"N"s (31*

o got ' C (' *)

OK ->"0" (3 3*)

P opt CP (3 *)

OK ->Q~ "0 (3 *)

R -> R' (C 3*)

RK - 1 R"s ('I 3*)

S -> t CS (' *)

SK ->"S" (1 3*)

T -> T' (I' *)

TK >"Too (3 3*)

U - u> 'U (' *)

UK - "U" (' 3*)

V eve CV (3 *)

VK ->"Vl (' I3*)
w o w' (1 3*)

x -> t CX (3 *)

XK -, X" (1'3*)
y e> ye (C *)

- 37 -

NAME -> LETTER (LETTER/DIGIT) * => "NAME"

LETTER ->("A"/ "B/ @C" /I"DIs/ "E"/ "F"/ UG"hI "H"/ "I's

/ SJ / "T" / "Lee / "M" / "N" / '"" sly / "0") (R"

TO PROCESS FORTRAN CORRECTLY, SCANICONST MUST PRECEDE SCANACONST,
* BUT IN CASE BOTH FAIL, SCANICONST PROVIDES SUPERIOR ERROR
* RECOVERY, THUS THE FOLLOWING CONSTRUCT IS USED.

LITERAL -> (SCANICONST ELSE SCANACONST ELSE SCANICONST)
-> DECPTACONST/LCONST/CHRCNST ;

SCANNER SCANACONST :
SCANACONST -> ACONST ; END SCANACONST

SCANNER SCANICONST :
SCANICONST -> ICONST (LCONST/OPERATOR) ?

-> DIGIT+ EEXP SIGN? DIGIT+ => "RCONST"
-> DIGIT+ DEXP SIGN? DIGIT+ => "DPCNST" ;

END SCANICONST

ICONST -> DIGIT+ => "DCONST" ;
ACONST -> DIGIT+ POINT DIGIT* (EEXP SIGN? DIGIT+)? => "RCONST"

-> DIGIT+ POINT DIGIT* DEXP SIGN? DIGIT+ => "DPCNST" ;

DECPTACONST -> POINT DIGIT+ (EEXP SIGN? DIGIT+)? => "RCONST"
-> POINT DIGIT+ DEXP SIGN? DIGIT+ => "DPCNST" ;

EEXP -> "E" (1 3*) ;
DEXP -> "D" (1 l*)
POINT -> "." (' '*)
SIGN -> (C"+""-") (' '*)

HCONST -> LENGTH 'H' HCONSTVAL
HCONSTVAL -> DC**LENGTH (' =*) => 'HCONST' 7

CHRCNST -> APOST
(NOT('EOL'/APOST) / (APOST APOST))+
APOST (' *) => 'HCONST'

APOST -; '#''

LENGTH -> DIGIT+ => (=)

- 38 -

LCONST -> DOT TK RK UK EK DOT => "LCONST"
-> DOT FK AK LK SK EK DOT => "LCONST"

SEPARATOR -> COMMA/EQUALS/COLON ;

OPERATOR -> DOT LK EK DOT => 'LE'
-> DOT LK TK DOT => 'LT'
-> DOT EK QK DOT => 'EQ'
-> DOT NK EK DOT => 'NE'
-> DOT GK EK DOT => 'GE'
-> DOT GK TK DOT => 'GT'
-> DOT AK NK DK DOT => 'AND'
-> DOT OK RK DOT => 'OR'
-> DOT EK QK VK DOT => 'EQV'
-> DOT NK EK QK VK DOT => 'NEQV'
-> DOT NK OK TK DOT => 'NOT'
-> ASTRSK
-> DBASTRSK
-> PLUS
-> MINUS
-> SLASH
-> DBSLASH

PLUS -> '+' ('*) => 'PLUS'
MINUS -> ' C' ('*) => 'MINUS' •
ASTRSK -> '=' ('*) > ASTRSK'
DBASTRSK => '* (' '*) '*' (' '*) > 'DBASTR'
SLASH -> '/' ('*) > 'SLASH'
DBSLASH -> '/ (' '*) '/' (' *) => 'CONCAT'
LPAREN-> '(' ('*) => 'LPAREN'
RPAREN -> ')' (S*) => 'RPAREN'
EQUALS -> '=' (= '*) > 'EQUALS'
COMMA -> ',' ('*) => 'COMMA' -
COLON -> ':' ('*) => 'COLON'

DOT-> "." (' '*) ;

- 39 -

SCANNER FORMATSPEC
FORMATSPEC -> LPAREN

(FIELD/SLASH* /COLON*) LIST (COMMA/SLASH* /COLON*)
RPAREN 7

SCANNER FIELD:
FIELD -> HCONST/CHRCNST/NHDESC/(ICONST? FORMATSPEC) 7

END FIELD

COMMA-> ',' (' *)

NHDESC -5 DIGIT* A DIGIT* => "FIELD"
-5 DIGIT* L DIGIT+ => "FIELD"
-5 DIGIT* I DIGIT+ (POINT DIGIT+)? => "FIELD"
-5 SCALE? FDEG
-5 SCALE? FDEG
-> T LR? DIGIT+ => "FIELD"
-5 DIGIT+ X => "FIELD"
-5 S PS? => "FIELD"
- SCALE
-) B NZ => "FIELD"

SCALE -5 SIGN? DIGIT+ P => "FIELD"
FDEG -> DIGIT* FD DIGIT+ POINT DIGIT+ => "FIELD"

-> DIGIT* EG DIGIT+ POINT DIGIT+ (EK DIGIT+)?
=> "FIELD" •

SIGN-> ("+"/"-") (' '*)

A -> "A" ('
L -> "L" (' '*);

I -> "I" (' '*)

FD-> ("F"/"D") (' '

EG- ("E"/"G") (' ' *

T -5 "T" (' '*) ;
LR -> ("L"/"R") (' '*)
x -> "x" (' '*)
S - s l IS (' I*)
PS- ("P"/I"s") (*)
p - "p" (' '*)

B -> "B" (' 1*)

NZ- ("N"/"Z") (' *)

END FORMATSPEC

END FORTRAN77.

- 40 -

Appendix E:
Interpreter Size and Speed

All size and speed measurements were done on a VAX
11/780 using the f77 compiler. All numbers are given in
decimal.

1. Size

1.1. Interpreter Size
The FSCAN interpreter consists of

8.5k bytes code
1.5k bytes data

1.2. Table Sizes
The object code or tables for the programs listed in
Appendix D require

1.2.1. Fscan
1.5k bytes

1.2.2. Pascal
5k bytes

1.2.3. Fortran77
15k bytes + 9k bytes increased interpreter data space

2. Speed
Following are timing measurements on the FORTRAN lexical
analyzer produced from the specification in Appendix D.

(1) Standard interpreter
16 lines/second

(2) Interpreter (1) with FORTRAN READ statement replaced
with a call to a 'read-line' routine written in C

22 lines/second

(3) Interpreter (2) with most primitive function calls
macro expanded in line

52 lines/second

(4) Interpreter (3) with logical left and right shift
primitives done in line :

80 lines/second (est.)

7 A-AlO3 635 COLORADO UNIV AT BOULDER DEPT OF COMPUTER SCIENCE FIG 9/27 SCAN-81 REPORT AND USER'S
MANUAL.CU)

IJUN al B M CLEMN DAA$29-78--0046p UNCLASSIFIED CU-CS-202-81 ARO-15074.13NM NL

SUFPLEMENTARY

I I

. #

, 4- A I

gFINFORMNATIONi

*1
-- -- ---

FSCAN-81 Report and User's Manual CU-CS-202-81
O3 ERRATA

page 29, line 2, substitute

"IDENT" "NUMBER" "SCONST"

page 32, last line, add :

SCANNER FORTRANSTATEMENT

FORTRANSTATEMENT-> FORTRANSTMT ; END FORTRANSTATEMENT ;

.- -- -. , • , " - -7 i ...

